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The stability of an electrically conducting Boussinesq fluid which is confined between 
two horizontal planes a distance d apart is investigated. The fluid is heated from 
below, cooled from above and the whole system rotates rapidly with angular velocity 
Q, about a vertical axis. A weak non-uniform horizontal magnetic field, whose strength 
is measured by the Alfvkn angular velocity QM [ < Qc, see (1.2)] permeates the fluid 
and corresponds to the flow of a uniform electric current parallel to the rotation axis. 
When the modified Rayleigh number R [see (2. l)] is greater than zero and q = K / h  < 1, 
where K and h are the thermal and magnetic diffusivities respectively, instability sets 
in as a westward-propagating wave with a low frequency of order K / d 2 .  

When R = 0 and QM > 2(v/A)+ Qc, where v is the viscosity, Roberts & Loper (1979) 
have isolated an exceptional class of unstable fast inertial waves which grow on the 
magnetic diffusion time scale 7A = d2 /h .  When R < 0 and r = 7* Q$/Qc exceeds some 
value dependent upon q, a class of unstable slow waves also exists for a range of 
negative values of R. These waves propagate eastwards (westwards) when q is less 
(greater) than unit'y. In  this case the fluid is stably stratified and the energy for the 
disturbance is taken from the magnetic field. The resulting description of the stability 
boundary for R < 0 in the r, R plane extends and clarifies the results of Roberts & 
Loper (1979), which are valid when both F and q are large. 

- ~~~ 

1. Introduction 
The fluid motions responsible for driving the geodynamo are generally believed to 

be the result of convection, thermal or otherwise. The only serious alternative is 
precession. Though a large amount of energy can be transmitted into the fluid by 
forces acting a t  the core surface, the recent investigations of Loper (1975) and 
Rochester et al. (1 975) suggest that most of the available precessional energy is dis- 
sipated in boundary layers, leaving an inadequate supply to drive the dynamo. On 
the other hand, convection maintained directly by buoyancy forces leads to motions 
in the main body of the core, which are likely to be sufficiently complex to regenerate 
magnetic field. Furthermore the wastage of energy in boundary layers is likely to be 
less severe. Out of all the possible convective processes, thermal convection is generally 
adopted in theoretical dynamo models (e.g. see Busse 1975; Childress & Soward 
1972; Soward 1974), owing to its relative simplicity. 

There have been a number of studies of hydromagnetic convection in rapidly 

t Permanent address : School of Mathematics, University of Newcastle upon Tyne, England. 
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rotating Boussinesq fluid layers of density po (e.g. see Chandrasekhar 1961 chap. 5 ) .  
A more recent comprehensive study has been made by Eltayeb (1972, 1975). He 
considered a horizontal fluid layer of thickness d rotating with angular velocity Oc 
and permeated by a uniform magnetic field B,*. By heating the fluid from below and 
cooling i t  from above an adverse temperature gradient is maintained. The stability 
of the system was investigated for a number of different orientations of Q, and B,* 
together with a variety of boundary conditions. I n  all cases the results indicate that 
instability occurs most readily when the Coriolis and Lorentz forces are comparable. 
Whether instability sets in as steady convection or overstability depends on the ratio 

q = K / h  (1.1) 

of the thermal diffusivity K to the magnetic diffusivity A .  Furthermore when p < O( l), 
the time scale associated with marginal convection is never shorter than the magnetic 
diffusion time scale 

rA = d2/A. ( 1 . 2 ~ )  

For this reason, the ratio of the sizes of the Lorentz and Coriolis forces is measured 
conveniently by 

r = rAi2s/Qc, (1.2b) 

where OM is the AlfvBn angular velocity, 

fl, = B,*/df,uPOP, (1.2c) 

and ,u is the magnetic permeability. 
For the particular case of rotation about a vertical axis z* and a uniform horizontal 

magnetic field B,*, Roberts & Stewartson (1974) have isolated the various regions 
in the q, plane in which overstability can occur and where i t  is preferred. I n  the 
case of geophysical interest, for which q < 1, overstability can never occur. It is 
widely believed, however, that  the secular variation of the earth's magnetic field 
may be the manifestation of the westward propagation of slow hydromagnetic waves 
(e.g. see Hide 1966). If such waves are driven by buoyancy forces, this is not apparent 
from Eltayeb's (1972) model and so some ingredient must be added in order that 
travelling waves will ensure a t  the onset of instability. The required ingredient is 
certainly present in the full sphere model considered by Eltayeb & Kumar (1977). 
They investigate convection in a rapidly rotating self-gravitating fluid sphere con- 
taining heat sources and a uniform electric current J *  = 2B,*/pd flowing through the 
sphere parallel to the rotation axis. Relative to cylindrical polar co-ordinates (a*, 4, z * )  
the corresponding magnetic field has components 

(1.3) B* = (0 ,  B,*m*/d, 0) 

and its strength increases linearly with distance a* from the z* rotation axis. The 
model combines the non-magnetic convection problem considered previously by 
Roberts (1968) and Busse (1970) with the non-dissipative magnetic problem con- 
sidered by Malkus (1967), in which buoyancy forces were omitted. Eltayeb & Kumar 
(1977) show that when I' is small and q is less than some order-one value, the waves 
propagate eastwards. In  this limit Busse (1976) notes that the primary force balance is 
geostrophic, i.e. the Coriolis forces are balanced by the pressure forces alone. Since 
geostrophy imposes a severe constraint on the fluid motion Busse (1976) is able to 



Convection in a rapidly rotating layer 671 

demonstrate the key interactions in the sphere through a particularly simple annulus 
model. Here a slight tilt of the top boundary mimics the geometrical structure of 
the spherical container. The resulting geostrophic constraint is broken by the com- 
bined effect of the Lorentz force and axial torques. The latter are maintained by the 
interaction of a radial gravitational field and an adverse density gradient and are 
responsible for driving the motion. As one would expect, in the case q < 1 he also 
finds that the waves necessarily propagate eastwards. When r is of order one, on the 
other hand, the Coriolis and Lorentz forces are comparable and Eltayeb & Kumar 
(1977) find from their numerical calculations that the waves propagate westwards. 
I n  view of the complexity of their model i t  would be helpful to have a simple model 
similar in spirit to Busse’s (1976) annulus model which isolates the crucial mechanism 
leading to the westward propagation of waves. This is the prime objective of this 
paper. 

Eltayeb & Kumar’s (1977) convection model must be interpreted cautiously. For 
even in the absence of buoyancy forces, Malkus (1967) has shown that instability is 
possible. I n  particular, in the absence of dissipation, a mode proportional to ei+ is 
unstable for sufficiently strong magnetic fields (Q, - QJ. Since geophysically rele- 
vant models have Q, < Q,, this instability is not present and its existence for larger 
values of Q, does not restrict the usefulness of the model. On the other hand, Roberts 
& Loper (1979) have isolated a number of diffusive instabilities, which operate a t  
moderate values of I?. First, they have shown that in the absence of buoyancy forces 
and viscosity a fast inertial ei$ mode with a frequency of order Qc ( 9 Q,) can grow on 
the magnetic diffusion time scale T~ for all values of F. Second, when the container 
boundary has finite electrical conductivity and I? 9 1 ,  they have shown that there 
exist unstable slow waves with frequencies of order Q&/Q, ( 9 ~ 1 \ l )  which can grow on 
the time scale T ~ .  I n  addition, when the container is perfectly conducting and F % 1, 
they have shown that a slow wave instability is possible only in the presence of 
buoyancy forces. That such modes of instability exist for sufficiently large adverse 
density gradients is, of course, to be expected. The surprising feature, however, is 
that the instability also exists when the fluid is sufficiently bottom heavy ! I n  other 
words, the stratification acts only as a catalyst, while the motion is driven by the 
Lorentz forces. 

It is made clear in Busse’s (1976) annulus model that, when I? < 1 ,  the geometrical 
shape of the container is responsible for the eastward propagation of the marginal 
modes. For the order-one values of F investigated by Eltayeb & Kumar (1977) the 
geometrical shape plays a less crucial role. Instead, the sense of rotation and magnetic 
field line curvature alone are responsible for the westward propagation of the waves. 
To isolate this key interaction in its simplest form, Eltayeb’s (1972) plane-layer 
model is considered with one slight modification. Instead of taking a uniform applied 
magnetic field, the fluid is supposed to be permeated by the magnetic field (1.3) 
adopted by Malkus (1967), Eltayeb & Kumar (1977) and Roberts & Loper (1979). 

The outline of the paper is as follows. I n  8 2 the governing equations and boundary 
conditions are described. The normal modes of the system are obtained and the 
dispersion relation (2.8) for the complex frequency s is derived. A key parameter in 
(2.8) is the magnetic Ekman number 

E = ( T A Q c ) - l  = h/dZQ,, ( 1 . 4 ~ )  
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which measures the magnetic diffusion decay rate in units of the rotation frequency. 
Since i t  is assumed throughout that 

6 < 1, fiM/fi ,  = (sr)' < 1, (1.4b, c) 

the quintic equation (2.8), in general, has three small and two large roots. The former 
three are considered in 93. They are associated with slow wave instabilities and, 
when both q and r are of order one, have frequencies of order 7;l When q and 
take their limiting values the order of magnitude of each of the three frequencies is 
modified and a number of new values may be distinguished; these are considered in 
$53.1-3.3. For completeness a brief discussion of the remaining two roots of (2.8), 
which correspond to  fast inertial waves, is included but since few of the results are 
new, i t  is relegated to an appendix. Here the fast instability found by Malkus (1967), 
which can occur only when f i M  and fi, are of comparable size, is ruled out by ( 1 . 4 ~ ) .  
On the other hand, though sr is small, (1.4 b) allows for the possibility that I? itself 
may be large as in 9 3.2 and in the case discussed by Roberts & Loper (1979). I n  Q 4, 
the geophysical relevance of the results obtained in Q 3.3 for q < 1 are discussed. 

2. The governing equations 
An electrically conducting Boussinesq fluid confined between two horizontal planes 

a distance d apart is considered. The system rotates rapidly with angular velocity 
a, about the vertical axis and the fluid is permeated by the magnetic field B* defined 
by (1 .3) .  The boundaries are both perfect electrical and thermal conductors and a 
temperature difference AT is maintained between the boundaries, with the bottom 
boundary the warmer. A convenient measure of the buoyancy forces is the modified 
Rayleigh number 

R = ag(AT)d/Q,K,  (2.1) 

where a is the coefficient of thermal expansion and g is the acceleration due to gravity. 
When R is sufficiently large the state of rigid-body rotation becomes unstable to 

infinitesimal perturbations and convection occurs. Adopting d for the unit of length, 
T~ [see (1.2a)I for the unit of time and letting U be the magnitude of a typical per- 
turbation velocity, the dimensionless variables 

x * / d  = X, t/?A = t ,  U * / u  = U, ( 2 . l a ,  b, c) 

(2.1 d ,  e )  

are introduced, where T* is the temperature. The system is referred to the cylindrical 
polar co-ordinates (w, q5, z )  and is, r$ and 2 are used to  denote the unit vectors in the 
w, q5 and z directions respectively. Marginal convection is governed by the linearized 
equations 

b*/B$ = mr$ + (U7, /d)  b, T*/AT = - z + q-l( u ~ , / d )  8 

E %/at + 22 x u = - V p  + R82 + r(al b/aq5 + 22 x b) + qmV2u,  

q - w / a t  = 2. u + V ~ B ,  

(2.2a) 

(2.2b) 

(2 .2c)  

(2 .2d,  e )  

ab/at = a1u/aq5 + V2b, 

V . U  = V . b  = 0, 
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where a,/a$ denotes $ differentiation keeping unit vectors fixed in direction, q, r and 
E are defined by ( l . l ) ,  (1 .2b )  and (1.4~') respectively, while 

is the usual Prandtl number. 

parts 

(7 = U / K  (2.9) 

The fluid velocity u and the magnetic field b are split into their toroidal and poloidal 

u = v x Y2+V x (V x 02)) ( 2 . 4 ~ )  

b = V X  fz'+Vx (Vxg2)  (2 .4b )  

so that (2 .2e ,  f )  are automatically satisfied. For simplicity, it  is supposed that the 
upper and lower boundaries are both stress free and so the boundary conditions 
satisfied by Y and Q, are 

a%D,Jaz2 = Q, = a Y p z  = 0 ( 2 . 5 ~ )  

on z = 0 , l .  Similar conditions apply to g and f ,  namely 

g = af/az = Q, (2 .5b )  

while the perturbation temperature 8 satisfies 

e = 0. ( 2 . 5 ~ )  

With the decomposition (2 .4)  aad the boundary conditions ( 2 . 5 ) ,  there exist separable 
solutions 

(@, g, e) = (6, g, 6) ~,(ka) sin nnz ei(M-st), ( 2 . 6 ~ )  

(Y, f,p) = (Q,$f?) J,(kw) ~ o s n n z e ~ ( ~ $ - ~ ~ ) ,  (2 .6b )  

where n is a non-zero integer. Upon substitution of (2 .6 )  into (2 .2 ) ,  it follows that the 
quantities with a tilde satisfy the algebraic equations 

E( - is + aqa2) n d  + 2('Ip - rf) = - p" + rimnng, ( 2 . 7 ~ )  

- E( -is + a@) Q+ 2nn@ - rp) = - rimf, (2 .7b)  

E( - 4s + uqd) ,496 = nnp" + R8 + rimk2fl, ( 2 . 7 ~ )  

( - i s + a 2 ) f =  imQ, ( - is+a2)# = i d ,  (2 .7d ,  e )  

( - iq-1.s + a2) 8 = k%) (2.7.f 1 

(2 .79 )  
where 

a2 = k2 + n2n2. 

Here (2 .7a ,  b )  describes the horizontal momentum balance, ( 2 . 7 ~ )  is the vertical 
component of the momentum equation, (2 .7d ,  e) are the equations of magnetic 
induction and ( 2 . 7 f )  is the heat-conduction equation. The system of algebraic equa- 
tions (2 .7 )  has a solution providad that 

- is+a2 (( - is + a2)  - i m r p  
R62 = 4 - iq-1s + a2 rm2 + B( - is + uqa2) ( - is + a2) 

where 

t To compare (2.8) with the results of Roberts & Loper (1979) it is necessary to note that 
they use the notation 7 = n ~ ,  r = E ,  P,,, = oq and w = SITA, while .for the special case of the 
plane layer kh = u*/rA. 

23 P L M  90 
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When m = 0, there are no magnetic field perturbations induced by the motion so 
the Lorentz force vanishes. Since the influence of the magnetic field is absent, this 
axisymmetric case is not discussed here and only non-zero integer values of m are 
considered in detail in the following sections. It must be emphasized that only one 
new term is introduced by the magnetic field line zurvature, which is absent in 
Eltayeb’s (1972) model with uniform magnetic field. It is - i m r  in the first term on 
the right of ( 2 . 8 ~ )  which originates from the magnetic hoop stress in the horizontal 
momentum balance. In addition it may be noted that though the magnetic field 
strength is not uniform there are no instabilities of the tearing-mode type (e.g. see 
Furth, Killeen & Rosenbluth 1963). The reason is that in our case curvature exactly 
compensates the field gradient and as a result the equations (2.7) governing the 
perturbations (2.6) to the equilibrium state have constant coeficients. Consequently 
there can be no critical radius and corresponding resonant surface on which a tearing- 
mode instability could occur. 

3. MAC waves and related instabilities 
Unlike the case of the fast waves considered in the appendix, the primary force 

balance for the slow waves includes in addition to the Coriolis force both the magnetic 
and the buoyancy forces. When 1 < -g e-l, there is a particular class of waves with 
frequencies of order which are subject to only slight dissipation. These waves, 
which are considered in Q 3.2 below, are the so-called MAC waves discussed first by 
Braginskii (1967). Elsewhere in this section, a number of other wave motions are 
considered which may justifiably be called MAC waves also. On the other hand, since 
their frequencies depend upon the thermal and/or magnetic diffusivities, they are 
readily distinguished from Braginskii’s MAC waves and following popular usage the 
term MAC wave will not be used to describe them. 

Anticipating that the inertia and viscous forces are negligible, it  is assumed that 
both s and a are of order one. Consequently (2.8) is linearized on the basis of E < 1 to 
give - 

-is+a2 R S ~  = 4{( - is + ~ 2 )  - imF)2/rnT + ( 1  + 62) m 2 r .  
- iq-1s + a2 

The value of R a t  which marginal convection occurs is now obtained by supposing 
that s is real. I n  particular, the real and imaginary parts yield the two separate 
identities 

where 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

(3.2d) 

When the values of 6, a, m and I’ are given, ( 3 . 2 ~ )  is a cubic in s which for certain 
values of the constants a2, 2q( 1 + q)-l m r  and O has three real roots. For each value 
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FIGURE 1.  The function F ( [ ,  a ,  p)  is plotted against 6 for two cases: (a) p < 3361 and (b)  
p > 3 % ~  In (a)  the dashed curves I and I1 are the asymptotes & = a([+P)/ [  and F,, = EZ+a2 
valid for [ < a and [ 9 p respectively. When p < a, F is approximated uniformly for all 
values of [ by either PI or FII. This is of particular importance for the cases r < 1 and q < 1 
considered in 533.1 and 3.3  respectively. In (a) the dashed curves 111 and IV  are the asymptotes 
qu = P(['+-tZ)/g and F,, = [ ( t + P )  valid for 6 < /I and 6 % a respectively. When a < p, F 
is approximated uniformly for all values of [ by either FIII or FIv, This is of particular import- 
ance for the case I? % 1 considered in 53.2.  

of s there is a corresponding value R(s)  of the Rayleigh number. Though these values 
are difficult to obtain in general there are a few observations that are readily made. 

To begin with, the three roots sl, s2 and s3 of ( 3 . 2 ~ )  satisfy 

( 3 . 3 ~ )  

(3 .3b )  

23-2 
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where (i, j, k) is any permutation of ( 1 , 2 , 3 ) .  The result indicates that whenever 

sk < 2 m r / ( 2 + q )  (1  +q)  (si < sj) (3 .3c)  

the value of R(s,) is less than R(sJ.  The approximate location of the roots is deter- 
mined by inspection of the graph of F(& a, p) vs. 6, which is indicated in figure 1. 
The character of the graph of F depends upon whether ,8 is less than or greater 
than 3*a, while the realized values of s and the resulting values of R depend critically 
on the sign of 0. 

When q < 1 and m 2 2 (or m = 1 and 6 > 4 3 )  the constant 0 is negative and ( 3 . 2 ~ )  
has one, two or three roots all lying in the interval 

- 2q( 1 + q ) - l m r  G s G 0. 

Here R is positive and the result (3 .3 )  is applicable. Therefore the smallest value of R 
corresponds to the mode with the smallest frequehcy I s I .  When q < 1, m = 1 and 
S < 4 3 ,  the constant 0 is positive and ( 3 . 2 ~ )  has one root in the interval 

- r  G G - 2 q ( i + q ) - l r .  

The reason is that in this interval 

and 
a q a s  < o (3 .4a )  

(3.4b) 

The corresponding value of R(s)  is positive. On the other hand, when r exceeds some 
value rlM (say) which depends on q, two additional positive roots s2 and s3 of ( 3 . 2 ~ )  
are also possible. The corresponding values of R are negative and, in view of (3.3),  

To summarize, the left-hand branch of F(s ,  u2,2q( 1 + q)-lmI?) corresponds to the 
usual thermal instability driven by buoyancy forces, which in all cases leads to west- 
ward-propagating waves. The right-hand branch, which is of interest only when 
m = 1, corresponds to a magnetic diffusion instability in which the energy for the 
disturbance is taken from the magnetic field. Thus for given r, as the bottom-heavy 
stratification is increased, instability first sets in as a slow wave, when R = R(s2).  
As the stratification is increased the fluid remains unstable until R = R(s3).  A t  this 
stage the marginal wave is relatively fast and any further increase in R renders the 
system stable again. The marginal waves with frequencies s2 and s3 both propagate 
eastwards. 

When q > 1 and m > 2 (or m = 1 and 6 > 4 3 ) ,  the constant 0 is positive and ( 3 . 2 ~ )  
always has one negative root s, which lies in the interval 

- oo< s < - 2 q ( l + q ) - l m F .  

According to (3 .2b)  the corresponding value of R is positive. For sufficiently large 
values of 0 there are also two positive roots s2 and s,. In both cases R is positive and 
according to ( 3 . 3 )  

Unfortunately, since the inequality ( 3 . 3 ~ )  with k = 2 may or may not be satisfied, 
there is no indication as to which of R(s,) and R(sJ is smaller. When q > 1,  m = 1 and 
6 < 4 3 ,  the constant 0 is negative and ( 3 . 2 ~ )  has one root in the interval 

0 > R(s,) > R(s,) (0 < s2 < s3). (3 .5 )  

R(s2) > R(s3) > 0 (0 < s2 < s,). (3.6) 

- 2 p ( i + q ) - 1 r  G s G -r, 
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since here both the inequalities ( 3 . 4 ~ )  b )  hold. The corresponding value of R is posi- 
tive. When 2 q ( l + q ) - l F  2 39a2, ( 3 . 2 a )  may have an additional two roots lying in 

The corresponding values of R are negative and according to (3 .3 )  

(3 .7 )  
In order for these roots to exist 0 must take a sufficiently large negative value. This 
imposes a lower limit rM (say) at  which this magnetic instability can take place. 
Unlike the case q < 1 ,  instability first sets in with increasing - R as a fastt wave and 
is ultimately suppressed as a slow wave. In both cases the marginal waves propagate 
westwards. 

In the following subsections various limiting cases are discussed in more detail. 

the interval - r  G 8 G 0. 

o > R ( ~ , )  > ~ ( 8 ~ )  ( -  r < s2 < s3 < 0). 

3.1.  The weakfield case, < 1 

When I? is small instability never sets in for negative R. As R is increased from zero, 
marginal convection occurs first in a localized region a t  a large distance from the 
rotation axis where Lorentz and Coriolis forces are comparable. There the magnetic 
field is almost uniform and the results of Eltayeb (1972)  and Roberts & Stewartson 
(1974) are applicable to lowest order. The main interest in this section is the small 
modifications which are induced by curvature. 

When q < 2,  the most unstable mode has 

n = 1, m2r = 2 x 3dn2, 82 = 2. ( 3 . 8 ~ )  

The corresponding value of the critical Rayleigh number is 

R, = 2 x 39+, 
while the frequency is 

S, = - q m r  = - 24 x 3 h q r 4 .  

(3 .8b )  

( 3 . 8 ~ )  

For a uniform magnetic field this mode describes steady convection (s = 0). It follows 
that the effect of the field line curvature is to induce a slow westward drift of the 
convection pattern. 

When q > 2,  the most unstable mode has 

n = 1, m2r = 2 x 3+(1 + q ) ,  S2 = 2 .  ( 3 . 9 a )  

(3 .9b )  

The corresponding value of the critical Rayleigh number is 

R, = 4 x 39n2/q. 

To lowest order the frequency may take either of the values 

s = & 3n2(q2- 2)+, (3 .9c )  

but to determine which is preferred it is necessary to proceed to the next approximation. 
This procedure may, however, be bypassed if the third slow mode corresponding to 
the values ( 3 . 9 a )  is calculated from ( 3 . 2 a ) .  This is 

(3.10) 

so according to (3 .3 )  the negative value of s in ( 3 . 9 ~ )  minimizes the Rayleigh number. 
t Here and elsewhere in this section the terms fast and slow are used to distinguish the 

relative sizes of the frequencies sl, s2 and s3. In $1, on the other hand, all these waves were 
described as slow in comparison with the inertial waves, which are very fast. 
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The above results indicate that the onset of instability takes the form of westward- 
propagating waves for all values of q.  The slow wave is preferred when q < 2. Further- 
more, though the azimuthal wavenumber m is large the q5 length scale m / m  of the 
waves in the convection region is of order one. 

3.2. The strong mugneticJield case 

When the magnetic field is strong, or more precisely when 

( 1  + q ) / q  e r e 6-1, 

the function F(s,  a2, 2q( 1 + q ) - l m r )  in ( 3 . 2 ~ )  is generally characterized by 

(3 .11)  

2 q ( l + q ) - l m r  > a2. 

In this case F is approximated for all values of s by either FIII or FIv (defined and 
illustrated in figure 2b) .  Furthermore, except possibly when m = 1 ,  0 is large, of 
order r2. Consequently ( 3 . 2 ~ )  has two large roots of order I' and one small root of 
order r-l. The two fast waves are the MAC waves discussed previously by Eltayeb 
& Kumar (1977) and Roberts & Loper (1979).  The slow wave is new but is closely 
related to the mode of steady convection discussed by Eltayeb (1972) and Roberts 
& Stewartson (1974) for a uniform magnetic field. 

Rather than determine the marginal modes from (3 .2 ) ,  it is more instructive to 
return to (3 .1 ) .  In the case of the slow modes, for which s is of order r-l, a quasi- 
steady state is achieved when the Rayleigh number is 

rR, = r{ - 4 + my1 + s 2 ) } / s 2 .  (3.12 a)  

If instead the Rayleigh number takes the value 

R = FRO+ R, (3 .12b)  

it is clear from (3 .1 )  that s is complex and is given approximately by 

-%S = ( 3 . 1 2 ~ )  

Evidently instability occurs whenever 

In the case of fast modes, for which s is of order I?, non-dissipative MAC waves are 
possible when their frequencies 

determined from (3 .1) ,  are real. Once the effect of dissipation has been taken into 
account the frequencies have order-one corrections slf. They are determined by 
substituting 

s = rsoi+Sl+ (3.14 b )  
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into (3.1) and yield the growth rates 

] + o(r-1). ( 3 . 1 4 ~ )  
0 - P(rs,*, a2, 2q( 1 + q)-lmP) 

- isl* = - a2 +' 2 { r2s0*(s,*+f,) 

The value at which 
The various types of instabilities that can arise may now be determined from the 

general theory. In particular, as I R I is increased from zero, instability first sets in 
at an order-I' value either as a slow wave when q < 1 or as a fast MAC wave when 
q > 1. In  the case q > 1 and m 2 2 (or m = 1 and s > 43) ,  for which there is the 
possibility of the excitation of two distinct MAC waves with positive R, ( 3 . 1 2 ~ )  and 
(3.3) indicate that the eastward-propagating (s > 0) mode is preferred. As q is in- 
creased, the size of the buoyancy forces required to excite the MAC waves decreases. 
Thus, when q = O ( r ) ,  the frequency s remains of order I' but the term qR/r in ( 3 . 1 4 ~ )  
becomes small, of order q-l. The buoyancy force is no longer important in the primary 
force balance and the MC wave instabilities discussed by Roberts & Loper (1979) are 
recovered. 

Some additional care must be taken in discussing the m = 1 mode, for in the limit 
6 + J3 the constant 0 in (3.2a) is no longer of order r2. Consequently the approxi- 
mations leading to (3.11) and (3.12) are no longer applicable. Nevertheless the 
resulting critical Rayleigh number, either positive or negative, is readily determined 
from (3.2). For the appropriate values 

is zero, of course, determines the marginal modes. 

m = 1 ,  S i J 3 ,  a i 2 7 r  ( n = 1 ) ,  (3.15) 

R and s are of order one and (3.2b) indicates that the Rayleigh number is given 
approximately by 

- 8  s2+16r2 R =  
3q(l-q) s 

For the case 84 43,  R is positive and takes its critical value 

when the frequency is 
R, = 64n2/313 -ql, 

s, = & 47r2q. 

(3.16) 

( 3 . 1 7 ~ )  

(3.17 b) 

The positive (negative) sign is taken when q is greater (less) than one. The signs in 
(3.17a, b) are reversed when S f  43.  It follows that the system is stable whenever 

R e >  R >  -Re (3.18) 

and is unstable elsewhere. It should be emphasized, however, that these order-one 
values of R are possibly only in the case m = 1 so the instability is exceptional even 
for positive R. Thus if the m = 1 mode is excluded Re will increase linearly with I' as 
indicated by (3.12) and (3.13) above. 

The fact that instability is possible for all values of R < - R, is a little surprising 
but the mathematical reason is simply that R + - 00 as S -+ 0. The physical reason, 
on the other hand, is that the modes corresponding to 6 .+ 0 (n fixed) have long hori- 
zontal length scales. This implies that the energy for the instability comes from the 
magnetic field at a great distance, where it is sufficiently large to overcome the static 
stability. 
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FIGURE 2. The regions of stability and instability in the I', R plane are indicated on the graph 
for the case q < 1. The smallest values of 1 R I for marginal stability always correspond to  
n = 1. To the right and below the boundary curve AC-, the m = 1 mode is unstable. For a 
prescribed value of 6, however, the region of instability is confined within the ourve A8BCa. 
The upper (lower) branch BC8 (BA,,) corresponds to the slow (fast) wave for which 8 is of order 
q(1)  and R is of order l(q-l) .  Both branches have R proportional to I' as I' .+ 00. The ordinate 

of the point B8 increases with 6 from I'M when 6 c 0 to infinity when 6 = J3. Once 6 exceeds 
J 3  the sign of R changes. The qualitative features of the stability boundaries for the modes 
m = 1 (6 > J3) ,  2 and some other integer greater than 2 are indicated. For each individual 
mode R -+ co as either I' -+ 0 or 03. The exception is the m = 1 mode, for which R -+$*ma 
aa I' .+ co. The resulting stability boundary for every type of disturbance is continuous but 
only piecewise differentiable. It begins at C+ with the mode tn = 1, 6 = J3 a t  I' = 00 and ends 
at D, where I' + 0, 6 + J2 and rn -+ (12)a n/I'i. All modes resulting from bottom (top) heavy 
stratification R < 0 ( > 0) propagate eastwards (westwards). The only region of stability lies 
between the curves DC, and AC-. Notice that in the absence of stratification (R = 0) the 
system is stable. 

3.3. Small thermal conductivity, q < 1 

The section is concluded with a discussion of the gebphysioally interesting limit 

q a ,  r q a .  (3.19) 

In this case, approximate solutions of (3 .2)  can be obtained for order-one values of 
r, which are at any rate qualitatively applicable whenever q < 1.  

The mode of instability which is excited for the smallest values of I R I is a slow 
mode, which oscillates on the thermal diffusion time scale [s = O(q) ] .  To isolate this 
mode the function P i n  ( 3 . 2 ~ )  is approximated by PI (see figure 1 a). In  this way ( 3 . 2 ~ ~ )  
reduces to the eauation 

(3.20 a) 
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for s, while the corresponding Rayleigh number determined by (3.2b) is 

- 8 s2 -t q2a4 R = - - .  
m8Z sq 

(3.20b) 

The positive and negative critical Rayleigh numbers are both obtained by minimizing 
(3.203) subject to ( 3 . 2 0 ~ ) .  Various curves corresponding to marginal convection are 
illustrated in figure 2, together with the resulting stability boundary defined by the 
critical values of R. 

The minimum value of r at which instability is possible for negative R is of some 
interest. It is 

rM = (2/3+)+ (3.21) 

and occurs as 6 -+ 0, s -+ - co and R62 3 - co ! To see how this limit is approached it 
is supposed that I' is slightly in excess of Substitution of 

r-r,+h ( & A + I )  
into ( 3 . 2 0 ~ )  then gives 

so (3.203) reduces to 

The critical value of R is 

r & q / s  3 A 

R = - 8 r & / P ( h  -%rMP). 

R, - y I ' & / A 2  

(3.22) 

( 3 . 2 3 ~ )  

(3.23b) 

( 3 . 2 4 ~ )  

and corresponds to the critical values 

6: = # A / r M ,  8, = 2I'&q/A. (3.243, c) 

It is readily seen that the approximations leading to (3.20) cease to be applicable 
once s = O(q*) and so the result (3.24) is no longer valid when A = O(q8). In  order to 
understand the significance of the order-# value of s, the stability curve for m = 1 ,  
n = 1 with 6 fixed is considered. In this particular case instability for negative values 
of R is not possible for values of r less than 

Upon writing 

(3.2a-d) vield 

and 

(3.25) 

( 3 . 2 6 ~ )  

(3.263) 

(3.26 c) 

For large negative P,, (3.263) has only a single negative root sl. This is the slow wave 
which is excited by positive R. When 

r2 = g(r:/u4p 

s1 = (a4rO)*, 
a second wave, with frequency 

is possible for 
R = - (8/s2) (a4r0/q2)+.  

( 3 . 2 7 ~ )  

(3.273) 

(3.27 c) 

For larger values of Fz this wave splits into a slow wave with R negative and of,order 
one and a fast wave [s = O(l) ]  with R negative and of order q-l. Meanwhile, the 
original slow wave which occurred for negative r2 changes to a fast wave when I', 
takes large positive values. It always corresponds to positive R. 
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4. Discussion 

K + 
than K .  With a core radius of d + 3.5 x 106 m, the geodynamo is characterized by 

The commonly accepted values of the diffusivities in the earth's fluid core are 
m2 s-l and h = 3 m2 s-l, while v is believed to be comparable to or smaller 

5 I,  q M 3 x 10-8, M 5 x 10-9. (4.1) 

There is no general agreement, however, about the value of the magnetic field strength 
B,* (and I'), which depends critically on the nature of the dynamo process. The tra- 
ditional picture of the geodynamo is one of the Braginskii (1964) type, for which B,* 
is of the order of 400 gauss. On the other hand, in a more recent dynamo model pro- 
posed by Busse (1976) it is argued that B,* is of the order of 4 gauss, comparable to 
its surface value. If these two values are taken as upper and lower bounds on the 
value of B,* , the value of I' realized lies in the interval 

2 x 10-2 G r G 2 x 102. 

An order-one value of I?, which will lie inside this interval, is especially attractive, 
since all convective models indicate that the critical Rayleigh number is minimized 
in this case. 

Though all values of I' have been considered in this paper, only those results ob- 
tained for I' of order one or larger are directly applicable to confined geometries. 
For this reason the westward propagation of waves isolated here is relevant to the 
geodynamo only when r 2 1 and supports Eltayeb & Kumar's (1977) full numerical 
calculations for the sphere. For smaller values of I' the direction of wave propagation 
is likely to be eastward as predicted both by their model and Busse's (1976). 

In  addition to the usual thermal instabilities, some of the magnetic instabilities 
isolated here may also form an integral part of the dynamo process. In particular, 
they may provide a mechanism for limiting the growth of the magnetic field. Now the 
fast inertial wave instability described in the appendix is unlikely to occur for, unless 
v is extremely small, the stability criterion (A 7) is met by the values of q, c and I' 
given by (4.1) and (4.2). On the other hand, the slow resistive modes of instability 
described in 53.3 are possible. They are of two types, which are most readily distin- 
guished in the limit of large I' discussed in 4 3.2. There they are typified by the two 
exceptional modes (3.15), which occur when R is either greater than or less than zero. 
It is, however, difficult to see how the system can evolve into a state in which the 
instability for R < 0 can operate. The reason is simply that no force is available to 
drive motions, which can first intensify the magnetic field in the required way. A 
further objection to this instability is that  it is manifest by eastward-propagating 
waves in contrast with the westward-propagating waves which occur when q > 1.  
It would therefore appear reasonable to suppose that the only relevant magnetic 
instabilities are the exceptional westward-propagating waves, which closely re- 
semble the usual thermal instability and occur when R > 0. 

In  their analysis of the spherical model, Eltayeb & Kumar (1977) isolated only the 
MAC wave instability when considering large I'. Even with the exclusion of all the 
exceptional magnetic modes described in the previous paragraph, this mode of in- 
stability is likely to be preferred only when q exceeds some order-one value. In  par- 

(4.2) 
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ticular, the results of $ 3 . 2  indicate that for the plane layer the slow resistive mode 
with s - r-1 is preferred when q < 1. Furthermore, in the geophysically interesting 
limit q < 1, qr < 1 discussed in 6 3.3, MAC wave marginal convection is non-existent. 

The author wishes to thank Professor P. H. Roberts for keeping him informed of 
his research with Professor D. E.  Loper. Their discovery of magnetic instabilities 
for bottom-heavy fluids was a source of stimulation during the detailed study of 
this mechanism reported in $ 3. The work was begun a t  the School of Mathematics, 
University of Newcastle upon Tyne and was completed under the support of National 
Science Foundation grant no. EAR 77-00145. 

Appendix 
Roberts & Loper (1979) have shown that in the absence of viscosity and buoyancy 

forces a fast (ES  - 1) m = 1 mode is unstable a t  all values of I?. Here the nature of this 
instability for the plane-layer model is described briefly. 

Upon setting R = 0 (2.8) reduces to two separate quadratic equations 

T i{( -is + a2) - i m r }  = &( 1 + a2)4 {I’m2 + E( -is + uqa2) ( -is + a”} (A 1) 

for s with a total of four distinct solutions. When E < 1, two of them are of order one 
and the general theory of $ 3 shows that they correspond to damped waves. The other 
two solutions are large, of order E - ~ ,  and to a first approximation their values 

€-Is,* = * s-12( 1 + 62)-6 (A 2) 

are the frequencies of two inertial waves. In  order to determine whether these modes 
are growing or damped it is necessary to determine the complex frequency 

s = + Slf + O(E) (A 3) 

correct to order one. At this stage the key role of viscosity is isolated by supposing 
that 

It follows immediately from (3.1) that 

= O ( l ) ,  uq = O ( E ) ,  a2 = O ( E - ~ ) .  (A 4) 

(A 5a) - isl+ + crqa2 = - (m + so*.) mr/( -is,+ + a%) 

and so the order-one imaginary part of s is given by 

When m = 1 and 6 < J3, the westward-propagating wave, s = e-ls0, may be un- 
stable. In  the absence of viscosity (u = 0) ,  the mode with the maximum growth rate 
is characterized by 

and has 
k = O(l), 6 = O ( d ) ,  a2e = 2 (A 6a, b, c) 

Ims,- = &F. (A 6 4  

It has a short vertical length scale and grows on the magnetic diffusion time scale T~ 

based on the width of the layer. With viscosity included, the growth rate is reduced, 
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and if instead of (A 6c) one considers the limit 6% -+ 0, it is readily seen that 
instability is totally eliminated when 

4c~q  > (i.e. 2(v/h)I 2 oM/Qc). (A 7) 

Though (A 7 )  is implicit in the results of Roberts & Loper (1979), the result (A 6), 
which hinges on the improved formula (A 5 ) ,  is new. 

When R 0 and the buoyancy forces are taken into account (A 5a)  must be 
replaced bv 

Evidently, for the parameter range envisaged in (A 4) [a = O( l)], R must be extremely 
large before buoyancy forces have any significant effect on the fast modes with short 
vertical length scales. 
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